Server agnostic DNS augmentation

By Tom Carpay

Supervisors: Willem Toorop & Luuk Hendriks
- No DNS handling available low in the network stack, which is desirable for high volume authoritative servers
- Focus on DNS service agnostic
- Extended Berkeley Packet filter (eBPF)
- We don't fully know the possibilities of this technology
- **eBPF**
 - Runs natively in Linux VM kernel space
 - Executes verified code
 - Limited instruction set
 - Execution limit (1 million instructions)
 - Different execution hooks

- Extensive high and low stack toolset used in many tracing tools

Fig. Linux tracing tools using eBPF. Brendan Gregg 2018
Related work

- Knot DNS - Bypass the TCP/IP stack
- Cloudflare: L4 Drop - XDP DDOS protection
- Various papers evaluating eBPF performance

Cloudflare’s L4Drop in action. 2018.
Research questions

How can XDP eBPF be used to augment and improve DNS software?

- Which features from XDP eBPF could be used to augment DNS software?
- How can DNS augmentations be implemented based upon these XDP eBPF features?
- How do these implementations impact performance?
The eXpress Data Path hook

- XDP actions
 - XDP_PASS
 - XDP_DROP
 - XDP_ABORTED
 - XDP_TX
 - XDP_REDIRECT

XDP IoVisor, 2018.
XDP eBPF features

- XDP & Traffic Control (TC) hooks
- Change packet size and contents
- Bypass network stack, XDP offloading
- Userspace “maps” and configuration e.g.
 - ARRAY
 - HASHMAP
 - PERCPU_ARRAY
 - PERCPU_HASHMAP
 - LPM_TRIE

Fig. XDP in the network stack. Adapted from Quentin Monet, Netronome, 2018

```c
struct bpf_map_def SEC("maps") state_map = {
  .type = BPF_MAP_TYPE_PERCPU_ARRAY,
  .key_size = sizeof(uint32_t),
  .value_size = sizeof(struct bucket),
  .max_size = sizeof(struct bucket),
  .max_entries = 1
};
```
Prototypes

- QName rewrite (collaborative work)

- Response Rate Limiting (RRL)
 - Basic prototype
 - Per IP RRL
 - Unknown host RRL
Response Rate Limiting

- How many packets have I seen in my current time frame? Cut off after threshold
- Check time frame a percentage of the time
- Flamethrower tool to query NSD
- Check rate of 50%, time frame of 1 second, 10 second bursts

Timeouts vs responses
The combined CPU load per threshold
Discussion and future work

- Flamethrower measurements are subject to network variability
- RRL of NSD shows that the RRL prototype works, though it does not reduce timeouts

- CPU load dependent adaptive RRL
- DNS cookies
Summary

- Which features from XDP eBPF could be used to augment DNS software?
 - Literature study

- How can DNS augmentations be implemented based upon these XDP BPF features?
 - Prototypes

- How do these implementations impact performance?
 - Experiments to validate and quantify prototypes

How can XDP BPF be used to augment and improve DNS software?

- Offload and add functionalities regardless of the DNS service